

Ellipsoid: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
> All traces are ellipses.
$>$ If $a=b=c$, the ellipsoid is a sphere.

Elliptic Paraboloid: $\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$
> Horizontal traces are ellipses.
$>$ Vertical traces are parabolas.
> The variable raised to the first power indicates the axis of the paraboloid.

Hyperboloid of One Sheet: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$
> Horizontal traces are ellipses.
$>$ Vertical traces are hyperbolas.
> The axis of symmetry corresponds to the variable whose coefficient is negative.

Sphere: $x^{2}+y^{2}+z^{2}=r^{2}$
> All Traces are circles.

Cone: $\frac{z^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$
> Horizontal traces are ellipses.
$>$ Vertical traces in the planes $x=k$ and $y=k$ are hyperbolas if $k \neq 0$ but are pairs of lines if $k=0$

Hyperboloid of Two Sheets: $-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
$>$ Horizontal traces in $z=k$ are ellipses if $k>c$ or $k<-c$.
$>$ Vertical traces are hyperbolas.
> The two minus signs indicates two sheets.

Hyperbolic Paraboloid: $\frac{z}{c}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}$
> Horizontal traces are hyperbolas.
> Vertical traces are parabolas.
$>$ The case where $c>0$ is illustrated.

